Фотопериодические реакции популяции коровки Henosepilachna vigintioctomaculata Motsch. (Coleoptera, Coccinellidae) из Приморского края России

Авторы

DOI:

https://doi.org/10.33910/2686-9519-2024-16-4-969-978

Ключевые слова:

картофельная коровка, фотопериод, диапауза, популяция, сезонный цикл

Аннотация

Фотопериодическая реакция организмов имеет приспособительное значение, играет ведущую роль в синхронизации жизненных циклов с годичным ритмом климатических условий, регулирует наступление диапаузы, смену типов размножения, морфологические изменения, цветовой полиморфизм, скорость роста и развития, плодовитость, особенности поведения. В работе было изучено влияние фотопериода на индукцию диапаузы, нажировочное питание и смертность личинок картофельной коровки Henosepilachna vigintioctomaculata. Было установлено, что для процесса нажировки и формирования диапаузы наиболее благоприятен фотопериод с длиной дня 12–18 ч. Доля диапаузирующих имаго составила 42.1–62.4%, наблюдалось снижение смертности личинок с 42.1 до 25.4%. Максимальный средний вес имаго составил 0.391 мг при 18 ч. При увеличении фотопериода до 24 ч. доля смертности личинок резко возрастала до 84.2%, а также происходил полный отказ от диапаузы.

Библиографические ссылки

ЛИТЕРАТУРА

Гусев, И. А., Лопатина, Е. Б. (2018) Температурный и фотопериодический контроль развития зеленого древесного щитника Palomena prasina (L.) (Heteroptera, Pentatomidae) в Ленинградской области. Энтомологическое обозрение, т. 97, № 4, с. 585–606. https://doi.org/10.1134/S0367144518040019

Злотин, А. З. (1989) Техническая энтомология. Киев: Наукова думка, 183 с.

Кулиева, Х. Ф. (2012) Эколого-физиологические основы прогноза развития вредных насекомых. Прогнозирование развития Noctuidae, Pieridae, Arctiidae, Geometridae в Азербайджане. Саарбрюккен: Lambert Academic Publ., 155 с.

Кулиева, Х. Ф. (2016) Роль климатических факторов в изменении параметров фотопериодических реакций у азербайджанской популяции американской белой бабочки (Hyphantria cunea Drury). В кн.: Innovative approaches in diagnostics and treatment of human and animal diseases caused by injuries, genetic and pathogenic factors: Peer-reviewed materials digest (collective monograph) published following the results of the CXXVII International research and practice conference and II stage of the Championship in medicine and pharmaceutics, biology, veterinary medicine and agriculture. Лондон: Международная академия наук и высшего образования, с. 15–18.

Мацишина, Н. В., Фисенко, П. В., Ермак, М. В. и др. (2021) Пища как фактор плодовитости, продолжительности развития и изменения морфометрических показателей у Henosepilachna vigintioctomaculata (Motschulsky). Овощи России, № 5, с. 81–88. https://doi.org/10.18619/2072-9146-2021-5-81-88

Симакова, Т. П. (1978) Влияние температуры и фотопериода на рост личинок 28-пятнистой коровки (Epilachna vigintioctomaculata Motsch). В кн.: Л. А. Ивлиев (ред.). Биология некоторых видов вредных и полезных насекомых Дальнего Востока. Владивосток: Дальневосточный научный центр АН СССР, с. 127–130.

Симакова, Т. П. (1979) О фотопериодической реакции картофельной коровки Epilachna vigintioctomaculata Motsch (Coccinellidae). В кн.: Л. А. Ивлиев (ред.). Экология и биология членистоногих юга Дальнего Востока. Владивосток: Дальневосточный научный центр АН СССР, с. 91–95.

Симакова, Т. П. (1981) Накопление фотопериодической информации у Epilachna vigintioctomaculata (Coleoptera, Coccinellidae). Зоологический журнал, т. 60, вып. 1, с. 53–61.

Abrams, P. A., Leimar, O., Nylin, S., Wiklund, C. (1996) The effect of flexible growth rates on optimal sizes and development times in a seasonal environment. The American Naturalist, vol. 147, no. 3, pp. 381–395. https://doi.org/10.1086/285857

Bradshaw, W. E., Holzapfel, C. M. (2007) Evolution of animal photoperiodism. Annual Review of Ecology, Evolution, and Systematics, vol. 38, no. 1, pp. 1–25. https://doi.org/10.1146/annurev.ecolsys.37.091305.110115

Dmitriew, C. M. (2011) The evolution of growth trajectories: What limits growth rate? Biological Reviews, vol. 86, no. 1, pp. 97–116. https://doi.org/10.1111/j.1469-185X.2010.00136.x

Dmitriew, C. M., Rowe, L. (2007) Effects of early resource limitation and compensatory growth on lifetime fitness in the ladybird beetle (Harmonia axyridis). Journal of Evolutionary Biology, vol. 20, no. 4, pp. 1298–1310. https://doi.org/10.1111/j.1420-9101.2007.01349.x

Fang, M., Xie, J.-K., Zhu, M. et al. (2018) Effects of photoperiod and LED light on the behavior of Henosepilachna vigintioctopunctata (Coleoptera: Coccinelidae) adults. Acta Entomologica Sinica, vol. 61, no. 11, pp. 1295–1299. https://doi.org/10.16380/j.kcxb.2018.11.006

Hammer, Ø., Harper, D. A. T., Ryan, P. D. (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, vol. 4, no. 1, article 4.

Hardie, J. (2010) Photoperiodism in insects: Aphid polyphenism. In: R. J. Nelson, D. L. Denlinger, D. E. Somers (eds.). Photoperiodism: The biological calendar. New York: Oxford University Press, pp. 342–364. https://doi.org/10.1093/acprof:oso/9780195335903.003.0014

Karthi, S. (2016) Impact of photoperiod and melatonin supplementation on cypermethrin induced damage on circadian clock antioxidant and detoxification genes in spodoptera litura lepidoptera noctuidae. Shodhganga: A reservoir of Indian theses. [Online]. Available at: http://hdl.handle.net/10603/235456 (accessed 10.01.2024).

Koštál, V. (2011) Insect photoperiodic calendar and circadian clock: Independence, cooperation, or unity? Journal of Insect Physiology, vol. 57, no. 5, pp. 538–556. https://doi.org/10.1016/j.jinsphys.2010.10.006

Kriegsfeld, L. J., Bittman, E. L. (2010) Photoperiodism and reproduction in mammals. In: R. J. Nelson, D. L. Denlinger, D. E. Somers (eds.). Photoperiodism: The biological calendar. New York: Oxford University Press, pp. 503–542. https://doi.org/10.1093/acprof:oso/9780195335903.003.0020

Morita, A. (1999) Neural and endocrine mechanisms for the photoperiodic response controlling adult diapause in the bean bug, Riptortus clavatus. Entomological Science, vol. 2, no. 4, pp. 579–587.

Murtagh, F., Legendre, P. (2014) Ward’s hierarchical agglomerative clustering method: Which algorithms implement ward’s criterion? Journal of Classification, vol. 31, no. 3, pp. 274–295. https://doi.org/10.1007/s00357-014-9161-z

Nishizuka, M., Azuma, A., Masaki, S. (1998) Diapause response to photoperiod and temperature in Lepisma saccharina Linnaeus (Thysanura: Lepismatidae). Entomological Science, vol. 1, no. 1, pp. 7–14.

Pavelka, J., Shimada, K., Koštál, V. (2003) Timeless: A link between fly’s circadian and photoperiodic clocks? European Journal of Entomology, vol. 100, no. 2, pp. 255–265. https://doi.org/10.14411/EJE.2003.041

Roenneberg, T., Radic, T., Gödel, M., Merrow, M. (2010) Seasonality and photoperiodism in fungi. In: R. J. Nelson, D. L. Denlinger, D. E. Somers (eds.). Photoperiodism: The biological calendar. New York: Oxford University Press, pp. 134–163. https://doi.org/10.1093/acprof:oso/9780195335903.003.0007

Saunders, D. S., Bertossa, R. C. (2011) Deciphering time measurement: The role of circadian ‘clock’ genes and formal experimentation in insect photoperiodism. Journal of Insect Physiology, vol. 57, no. 5, pp. 557–566. https://doi.org/10.1016/j.jinsphys.2011.01.013

Saunders, D. S., Steel, C. G. H., Vafopoulou, X., Lewis, R. (2002) Insect clocks. 2nd ed. Amsterdam: Elsevier Publ., 560 p.

Wang, Z.-L. Wang, X.-P., Li, C.-R. et al. (2018) Effect of dietary protein and carbohydrates on survival and growth in larvae of the Henosepilachna vigintioctopunctata (F.) (Coleoptera: Coccinellidae). Journal of Insect Science, vol. 18, no. 4, article 3. https://doi.org/10.1093/jisesa/iey067

REFERENCES

Abrams, P. A., Leimar, O., Nylin, S., Wiklund, C. (1996) The effect of flexible growth rates on optimal sizes and development times in a seasonal environment. The American Naturalist, vol. 147, no. 3, pp. 381–395. https://doi.org/10.1086/285857 (In English)

Bradshaw, W. E., Holzapfel, C. M. (2007) Evolution of animal photoperiodism. Annual Review of Ecology, Evolution, and Systematics, vol. 38, no. 1, pp. 1–25. https://doi.org/10.1146/annurev.ecolsys.37.091305.110115 (In English)

Dmitriew, C. M. (2011) The evolution of growth trajectories: What limits growth rate? Biological Reviews, vol. 86, no. 1, pp. 97–116. https://doi.org/10.1111/j.1469-185X.2010.00136.x (In English)

Dmitriew, C. M., Rowe, L. (2007) Effects of early resource limitation and compensatory growth on lifetime fitness in the ladybird beetle (Harmonia axyridis). Journal of Evolutionary Biology, vol. 20, no. 4, pp. 1298–1310. https://doi.org/10.1111/j.1420-9101.2007.01349.x (In English)

Fang, M., Xie, J.-K., Zhu, M. et al. (2018) Effects of photoperiod and LED light on the behavior of Henosepilachna vigintioctopunctata (Coleoptera: Coccinelidae) adults. Acta Entomologica Sinica, vol. 61, no. 11, pp. 1295–1299. https://doi.org/10.16380/j.kcxb.2018.11.006 (In Chinese)

Gusev, I. A., Lopatina, E. B. (2018) Temperaturnyj i fotoperiodicheskij kontrol’ razvitiya zelenogo drevesnogo shchitnika Palomena prasina (L.) (Heteroptera, Pentatomidae) v Leningradskoj oblasti [Temperature and photoperiodic control of development in the green shield bug Palomena prasina (L.) (Heteroptera, Pentatomidae) in Leningrad Province]. Entomologicheskoe obozrenie — Entomological Review, vol. 97, no. 4, pp. 585–606. https://doi.org/10.1134/S0367144518040019 (In Russian)

Hammer, Ø., Harper, D. A. T., Ryan, P. D. (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, vol. 4, no. 1, article 4. (In English)

Hardie, J. (2010) Photoperiodism in insects: Aphid polyphenism. In: R. J. Nelson, D. L. Denlinger, D. E. Somers (eds.). Photoperiodism: The biological calendar. New York: Oxford University Press, pp. 342–364. https://doi.org/10.1093/acprof:oso/9780195335903.003.0014 (In English)

Karthi, S. (2016) Impact of photoperiod and melatonin supplementation on cypermethrin induced damage on circadian clock antioxidant and detoxification genes in spodoptera litura lepidoptera noctuidae. Shodhganga: A reservoir of Indian theses. [Online]. Available at: http://hdl.handle.net/10603/235456 (accessed 10.01.2024). (In English)

Koštál, V. (2011) Insect photoperiodic calendar and circadian clock: Independence, cooperation, or unity? Journal of Insect Physiology, vol. 57, no. 5, pp. 538–556. https://doi.org/10.1016/j.jinsphys.2010.10.006 (In English)

Kriegsfeld, L. J., Bittman, E. L. (2010) Photoperiodism and reproduction in mammals. In: R. J. Nelson, D. L. Denlinger, D. E. Somers (eds.). Photoperiodism: The biological calendar. New York: Oxford University Press, pp. 503–542. https://doi.org/10.1093/acprof:oso/9780195335903.003.0020 (In English)

Kulieva, Kh. F. (2012) Ekologo-fiziologicheskie osnovy prognoza razvitiya vrednykh nasekomykh. Prognozirovanie razvitiya Noctuidae, Pieridae, Arctiidae, Geometridae v Azerbajdzhane [Ecological and physiological bases of pest development prediction. Predicting the development of Noctuidae, Pyrididae, Arctiidae, Geometryidae in Azerbaijan]. Saarbrucken: Lambert Academic Publ., 155 p. (In Russian)

Kulieva, Kh. F. (2016) Rol’ klimaticheskikh faktorov v izmenenii parametrov fotoperiodicheskikh reaktsij u azerbajdzhanskoj populyatsii amerikanskoj beloj babochki (Hyphantria cunea Drury) [The role of climatic factors in changing the parameters of photoperiodic responses in the Azerbaijani population of the American white butterfly (Hyphantria cunea Drury)]. In: Innovative approaches in diagnostics and treatment of human and animal diseases caused by injuries, genetic and pathogenic factors: Peer-reviewed materials digest (collective monograph) published following the results of the CXXVII International research and practice conference and II stage of the Championship in Medicine and pharmaceutics, biology, veterinary medicine and agriculture. London: International Academy of Science and Higher Education Publ., pp. 15–18. (In Russian)

Matsishina, N. V., Fisenko, P. V., Ermak, M. V. et al. (2021) Pishcha kak faktor plodovitosti, prodolzhitel'nosti razvitiya i izmeneniya morfometricheskih pokazatelej u Henosepilachna vigintioctomaculata (Motschulsky) [Food as a factor of fertility, development duration, and changes in morphometric parameters in Henosepilachna vigintioctomaculata (Motschulsky)]. Ovoshchi Rossii — Vegetable Crops of Russia, no. 5, pp. 81–88. https://doi.org/10.18619/2072-9146-2021-5-81-88 (In Russian)

Morita, A. (1999) Neural and endocrine mechanisms for the photoperiodic response controlling adult diapause in the bean bug, Riptortus clavatus. Entomological Science, vol. 2, no. 4, pp. 579–587. (In English)

Murtagh, F., Legendre, P. (2014) Ward’s hierarchical agglomerative clustering method: Which algorithms implement ward’s criterion? Journal of Classification, vol. 31, no. 3, pp. 274–295. https://doi.org/10.1007/s00357-014-9161-z (In English)

Nishizuka, M., Azuma, A., Masaki, S. (1998) Diapause response to photoperiod and temperature in Lepisma saccharina Linnaeus (Thysanura: Lepismatidae). Entomological Science, vol. 1, no. 1, pp. 7–14. (In English)

Pavelka, J., Shimada, K., Koštál, V. (2003) Timeless: A link between fly’s circadian and photoperiodic clocks? European Journal of Entomology, vol. 100, no. 2, pp. 255–265. https://doi.org/10.14411/EJE.2003.041 (In English)

Roenneberg, T., Radic, T., Gödel, M., Merrow, M. (2010) Seasonality and photoperiodism in fungi. In: R. J. Nelson, D. L. Denlinger, D. E. Somers (eds.). Photoperiodism: The biological calendar. New York: Oxford University Press, pp. 134–163. https://doi.org/10.1093/acprof:oso/9780195335903.003.0007 (In English)

Saunders, D. S., Bertossa, R. C. (2011) Deciphering time measurement: The role of circadian ‘clock’ genes and formal experimentation in insect photoperiodism. Journal of Insect Physiology, vol. 57, no. 5, pp. 557–566. https://doi.org/10.1016/j.jinsphys.2011.01.013 (In English)

Saunders, D. S., Steel, C. G. H., Vafopoulou, X., Lewis, R. (2002) Insect clocks. 2nd ed. Amsterdam: Elsevier Publ., 560 p. (In English)

Simakova, T. P. (1978) Vliyanie temperatury i fotoperioda na rost lichinok 28-pyatnistoj korovki (Epilachna vigintioctomaculata Motsch) [Influence of temperature and photoperiod on increase of larvae of the 28-spotted potato ladybird]. In: L. A. Ivliev (ed.). Biologiya nekotorykh vidov vrednykh i poleznykh nasekomykh Dal’nego Vostoka [Biology of some species of pest and useful insects of the Far East]. Vladivostok: Far Eastern Branch of the Academy of Sciences of the USSR Publ., pp. 127–130. (In Russian)

Simakova, T. P. (1979) O fotoperiodicheskoj reaktsii kartofel’noj korovki Epilachna vigintioctomaculata Motsch (Coccinellidae) [On the photoperiodic reaction of the potato ladybird Epilacna vygintiostomaculata (Coccinellidae)]. In: L. A. Ivliev (ed.). Ekologiya i biologiya chlenistonogikh yuga Dal’nego Vostoka [Ecology and biology of arthropods in the southern Far East]. Vladivostok: Far Eastern Branch of the Academy of Sciences of the USSR Publ., pp. 91–95. (In Russian)

Simakova, T. P. (1981) Nakoplenie fotoperiodicheskoj informatsii u Epilachna vigintioctomaculata (Coleoptera, Coccinellidae). Zoologicheskij zhurnal, vol. 60, no. 1, pp. 53–61. (In Russian)

Wang, Z.-L. Wang, X.-P., Li, C.-R. et al. (2018) Effect of dietary protein and carbohydrates on survival and growth in larvae of the Henosepilachna vigintioctopunctata (F.) (Coleoptera: Coccinellidae). Journal of Insect Science, vol. 18, no. 4, article 3. https://doi.org/10.1093/jisesa/iey067 (In English)

Zlotin, A. Z. (1989) Tekhnicheskaya entomologiya [Technical entomology]. Kyiv: Naukova Dumka Publ., 183 p. (In Russian)

Загрузки

Опубликован

20.01.2025

Выпуск

Раздел

Статьи

Наиболее читаемые статьи этого автора (авторов)