Photoperiodism of the ladybird Henosepilachna vigintioctomaculata Motsch. (Coleoptera, Coccinellidae) population from Primorsky Krai, Russia
DOI:
https://doi.org/10.33910/2686-9519-2024-16-4-969-978Keywords:
potato ladybird beetle, photoperiod, diapauses, population, seasonal cycleAbstract
Photoperiodism plays a key role in the adaptation of organisms and the synchronization of their life cycles with seasonal climatic changes. It influences various biological processes, including the onset of diapause, changes in reproductive strategies, morphological changes, color polymorphism, growth rates, fertility, and behavior. This study investigates the effect of photoperiod length on diapause induction, fat accumulation, and larval mortality in Henosepilachna vigintioctomaculata. A photoperiod of 12–18 hours was found to be the most favorable for fat accumulation and preparation for diapause, with 42.1–62.4% of adult beetles entering diapause. Larval mortality ranged from 25.4 to 42.1%. The highest average adult beetle weight (0.3931 mg) was observed under an 18-hour photoperiod. However, when the photoperiod length was extended to 24 hours, larval mortality reached 84.2%, and diapause induction was completely inhibited.
References
ЛИТЕРАТУРА
Гусев, И. А., Лопатина, Е. Б. (2018) Температурный и фотопериодический контроль развития зеленого древесного щитника Palomena prasina (L.) (Heteroptera, Pentatomidae) в Ленинградской области. Энтомологическое обозрение, т. 97, № 4, с. 585–606. https://doi.org/10.1134/S0367144518040019
Злотин, А. З. (1989) Техническая энтомология. Киев: Наукова думка, 183 с.
Кулиева, Х. Ф. (2012) Эколого-физиологические основы прогноза развития вредных насекомых. Прогнозирование развития Noctuidae, Pieridae, Arctiidae, Geometridae в Азербайджане. Саарбрюккен: Lambert Academic Publ., 155 с.
Кулиева, Х. Ф. (2016) Роль климатических факторов в изменении параметров фотопериодических реакций у азербайджанской популяции американской белой бабочки (Hyphantria cunea Drury). В кн.: Innovative approaches in diagnostics and treatment of human and animal diseases caused by injuries, genetic and pathogenic factors: Peer-reviewed materials digest (collective monograph) published following the results of the CXXVII International research and practice conference and II stage of the Championship in medicine and pharmaceutics, biology, veterinary medicine and agriculture. Лондон: Международная академия наук и высшего образования, с. 15–18.
Мацишина, Н. В., Фисенко, П. В., Ермак, М. В. и др. (2021) Пища как фактор плодовитости, продолжительности развития и изменения морфометрических показателей у Henosepilachna vigintioctomaculata (Motschulsky). Овощи России, № 5, с. 81–88. https://doi.org/10.18619/2072-9146-2021-5-81-88
Симакова, Т. П. (1978) Влияние температуры и фотопериода на рост личинок 28-пятнистой коровки (Epilachna vigintioctomaculata Motsch). В кн.: Л. А. Ивлиев (ред.). Биология некоторых видов вредных и полезных насекомых Дальнего Востока. Владивосток: Дальневосточный научный центр АН СССР, с. 127–130.
Симакова, Т. П. (1979) О фотопериодической реакции картофельной коровки Epilachna vigintioctomaculata Motsch (Coccinellidae). В кн.: Л. А. Ивлиев (ред.). Экология и биология членистоногих юга Дальнего Востока. Владивосток: Дальневосточный научный центр АН СССР, с. 91–95.
Симакова, Т. П. (1981) Накопление фотопериодической информации у Epilachna vigintioctomaculata (Coleoptera, Coccinellidae). Зоологический журнал, т. 60, вып. 1, с. 53–61.
Abrams, P. A., Leimar, O., Nylin, S., Wiklund, C. (1996) The effect of flexible growth rates on optimal sizes and development times in a seasonal environment. The American Naturalist, vol. 147, no. 3, pp. 381–395. https://doi.org/10.1086/285857
Bradshaw, W. E., Holzapfel, C. M. (2007) Evolution of animal photoperiodism. Annual Review of Ecology, Evolution, and Systematics, vol. 38, no. 1, pp. 1–25. https://doi.org/10.1146/annurev.ecolsys.37.091305.110115
Dmitriew, C. M. (2011) The evolution of growth trajectories: What limits growth rate? Biological Reviews, vol. 86, no. 1, pp. 97–116. https://doi.org/10.1111/j.1469-185X.2010.00136.x
Dmitriew, C. M., Rowe, L. (2007) Effects of early resource limitation and compensatory growth on lifetime fitness in the ladybird beetle (Harmonia axyridis). Journal of Evolutionary Biology, vol. 20, no. 4, pp. 1298–1310. https://doi.org/10.1111/j.1420-9101.2007.01349.x
Fang, M., Xie, J.-K., Zhu, M. et al. (2018) Effects of photoperiod and LED light on the behavior of Henosepilachna vigintioctopunctata (Coleoptera: Coccinelidae) adults. Acta Entomologica Sinica, vol. 61, no. 11, pp. 1295–1299. https://doi.org/10.16380/j.kcxb.2018.11.006
Hammer, Ø., Harper, D. A. T., Ryan, P. D. (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, vol. 4, no. 1, article 4.
Hardie, J. (2010) Photoperiodism in insects: Aphid polyphenism. In: R. J. Nelson, D. L. Denlinger, D. E. Somers (eds.). Photoperiodism: The biological calendar. New York: Oxford University Press, pp. 342–364. https://doi.org/10.1093/acprof:oso/9780195335903.003.0014
Karthi, S. (2016) Impact of photoperiod and melatonin supplementation on cypermethrin induced damage on circadian clock antioxidant and detoxification genes in spodoptera litura lepidoptera noctuidae. Shodhganga: A reservoir of Indian theses. [Online]. Available at: http://hdl.handle.net/10603/235456 (accessed 10.01.2024).
Koštál, V. (2011) Insect photoperiodic calendar and circadian clock: Independence, cooperation, or unity? Journal of Insect Physiology, vol. 57, no. 5, pp. 538–556. https://doi.org/10.1016/j.jinsphys.2010.10.006
Kriegsfeld, L. J., Bittman, E. L. (2010) Photoperiodism and reproduction in mammals. In: R. J. Nelson, D. L. Denlinger, D. E. Somers (eds.). Photoperiodism: The biological calendar. New York: Oxford University Press, pp. 503–542. https://doi.org/10.1093/acprof:oso/9780195335903.003.0020
Morita, A. (1999) Neural and endocrine mechanisms for the photoperiodic response controlling adult diapause in the bean bug, Riptortus clavatus. Entomological Science, vol. 2, no. 4, pp. 579–587.
Murtagh, F., Legendre, P. (2014) Ward’s hierarchical agglomerative clustering method: Which algorithms implement ward’s criterion? Journal of Classification, vol. 31, no. 3, pp. 274–295. https://doi.org/10.1007/s00357-014-9161-z
Nishizuka, M., Azuma, A., Masaki, S. (1998) Diapause response to photoperiod and temperature in Lepisma saccharina Linnaeus (Thysanura: Lepismatidae). Entomological Science, vol. 1, no. 1, pp. 7–14.
Pavelka, J., Shimada, K., Koštál, V. (2003) Timeless: A link between fly’s circadian and photoperiodic clocks? European Journal of Entomology, vol. 100, no. 2, pp. 255–265. https://doi.org/10.14411/EJE.2003.041
Roenneberg, T., Radic, T., Gödel, M., Merrow, M. (2010) Seasonality and photoperiodism in fungi. In: R. J. Nelson, D. L. Denlinger, D. E. Somers (eds.). Photoperiodism: The biological calendar. New York: Oxford University Press, pp. 134–163. https://doi.org/10.1093/acprof:oso/9780195335903.003.0007
Saunders, D. S., Bertossa, R. C. (2011) Deciphering time measurement: The role of circadian ‘clock’ genes and formal experimentation in insect photoperiodism. Journal of Insect Physiology, vol. 57, no. 5, pp. 557–566. https://doi.org/10.1016/j.jinsphys.2011.01.013
Saunders, D. S., Steel, C. G. H., Vafopoulou, X., Lewis, R. (2002) Insect clocks. 2nd ed. Amsterdam: Elsevier Publ., 560 p.
Wang, Z.-L. Wang, X.-P., Li, C.-R. et al. (2018) Effect of dietary protein and carbohydrates on survival and growth in larvae of the Henosepilachna vigintioctopunctata (F.) (Coleoptera: Coccinellidae). Journal of Insect Science, vol. 18, no. 4, article 3. https://doi.org/10.1093/jisesa/iey067
REFERENCES
Abrams, P. A., Leimar, O., Nylin, S., Wiklund, C. (1996) The effect of flexible growth rates on optimal sizes and development times in a seasonal environment. The American Naturalist, vol. 147, no. 3, pp. 381–395. https://doi.org/10.1086/285857 (In English)
Bradshaw, W. E., Holzapfel, C. M. (2007) Evolution of animal photoperiodism. Annual Review of Ecology, Evolution, and Systematics, vol. 38, no. 1, pp. 1–25. https://doi.org/10.1146/annurev.ecolsys.37.091305.110115 (In English)
Dmitriew, C. M. (2011) The evolution of growth trajectories: What limits growth rate? Biological Reviews, vol. 86, no. 1, pp. 97–116. https://doi.org/10.1111/j.1469-185X.2010.00136.x (In English)
Dmitriew, C. M., Rowe, L. (2007) Effects of early resource limitation and compensatory growth on lifetime fitness in the ladybird beetle (Harmonia axyridis). Journal of Evolutionary Biology, vol. 20, no. 4, pp. 1298–1310. https://doi.org/10.1111/j.1420-9101.2007.01349.x (In English)
Fang, M., Xie, J.-K., Zhu, M. et al. (2018) Effects of photoperiod and LED light on the behavior of Henosepilachna vigintioctopunctata (Coleoptera: Coccinelidae) adults. Acta Entomologica Sinica, vol. 61, no. 11, pp. 1295–1299. https://doi.org/10.16380/j.kcxb.2018.11.006 (In Chinese)
Gusev, I. A., Lopatina, E. B. (2018) Temperaturnyj i fotoperiodicheskij kontrol’ razvitiya zelenogo drevesnogo shchitnika Palomena prasina (L.) (Heteroptera, Pentatomidae) v Leningradskoj oblasti [Temperature and photoperiodic control of development in the green shield bug Palomena prasina (L.) (Heteroptera, Pentatomidae) in Leningrad Province]. Entomologicheskoe obozrenie — Entomological Review, vol. 97, no. 4, pp. 585–606. https://doi.org/10.1134/S0367144518040019 (In Russian)
Hammer, Ø., Harper, D. A. T., Ryan, P. D. (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, vol. 4, no. 1, article 4. (In English)
Hardie, J. (2010) Photoperiodism in insects: Aphid polyphenism. In: R. J. Nelson, D. L. Denlinger, D. E. Somers (eds.). Photoperiodism: The biological calendar. New York: Oxford University Press, pp. 342–364. https://doi.org/10.1093/acprof:oso/9780195335903.003.0014 (In English)
Karthi, S. (2016) Impact of photoperiod and melatonin supplementation on cypermethrin induced damage on circadian clock antioxidant and detoxification genes in spodoptera litura lepidoptera noctuidae. Shodhganga: A reservoir of Indian theses. [Online]. Available at: http://hdl.handle.net/10603/235456 (accessed 10.01.2024). (In English)
Koštál, V. (2011) Insect photoperiodic calendar and circadian clock: Independence, cooperation, or unity? Journal of Insect Physiology, vol. 57, no. 5, pp. 538–556. https://doi.org/10.1016/j.jinsphys.2010.10.006 (In English)
Kriegsfeld, L. J., Bittman, E. L. (2010) Photoperiodism and reproduction in mammals. In: R. J. Nelson, D. L. Denlinger, D. E. Somers (eds.). Photoperiodism: The biological calendar. New York: Oxford University Press, pp. 503–542. https://doi.org/10.1093/acprof:oso/9780195335903.003.0020 (In English)
Kulieva, Kh. F. (2012) Ekologo-fiziologicheskie osnovy prognoza razvitiya vrednykh nasekomykh. Prognozirovanie razvitiya Noctuidae, Pieridae, Arctiidae, Geometridae v Azerbajdzhane [Ecological and physiological bases of pest development prediction. Predicting the development of Noctuidae, Pyrididae, Arctiidae, Geometryidae in Azerbaijan]. Saarbrucken: Lambert Academic Publ., 155 p. (In Russian)
Kulieva, Kh. F. (2016) Rol’ klimaticheskikh faktorov v izmenenii parametrov fotoperiodicheskikh reaktsij u azerbajdzhanskoj populyatsii amerikanskoj beloj babochki (Hyphantria cunea Drury) [The role of climatic factors in changing the parameters of photoperiodic responses in the Azerbaijani population of the American white butterfly (Hyphantria cunea Drury)]. In: Innovative approaches in diagnostics and treatment of human and animal diseases caused by injuries, genetic and pathogenic factors: Peer-reviewed materials digest (collective monograph) published following the results of the CXXVII International research and practice conference and II stage of the Championship in Medicine and pharmaceutics, biology, veterinary medicine and agriculture. London: International Academy of Science and Higher Education Publ., pp. 15–18. (In Russian)
Matsishina, N. V., Fisenko, P. V., Ermak, M. V. et al. (2021) Pishcha kak faktor plodovitosti, prodolzhitel'nosti razvitiya i izmeneniya morfometricheskih pokazatelej u Henosepilachna vigintioctomaculata (Motschulsky) [Food as a factor of fertility, development duration, and changes in morphometric parameters in Henosepilachna vigintioctomaculata (Motschulsky)]. Ovoshchi Rossii — Vegetable Crops of Russia, no. 5, pp. 81–88. https://doi.org/10.18619/2072-9146-2021-5-81-88 (In Russian)
Morita, A. (1999) Neural and endocrine mechanisms for the photoperiodic response controlling adult diapause in the bean bug, Riptortus clavatus. Entomological Science, vol. 2, no. 4, pp. 579–587. (In English)
Murtagh, F., Legendre, P. (2014) Ward’s hierarchical agglomerative clustering method: Which algorithms implement ward’s criterion? Journal of Classification, vol. 31, no. 3, pp. 274–295. https://doi.org/10.1007/s00357-014-9161-z (In English)
Nishizuka, M., Azuma, A., Masaki, S. (1998) Diapause response to photoperiod and temperature in Lepisma saccharina Linnaeus (Thysanura: Lepismatidae). Entomological Science, vol. 1, no. 1, pp. 7–14. (In English)
Pavelka, J., Shimada, K., Koštál, V. (2003) Timeless: A link between fly’s circadian and photoperiodic clocks? European Journal of Entomology, vol. 100, no. 2, pp. 255–265. https://doi.org/10.14411/EJE.2003.041 (In English)
Roenneberg, T., Radic, T., Gödel, M., Merrow, M. (2010) Seasonality and photoperiodism in fungi. In: R. J. Nelson, D. L. Denlinger, D. E. Somers (eds.). Photoperiodism: The biological calendar. New York: Oxford University Press, pp. 134–163. https://doi.org/10.1093/acprof:oso/9780195335903.003.0007 (In English)
Saunders, D. S., Bertossa, R. C. (2011) Deciphering time measurement: The role of circadian ‘clock’ genes and formal experimentation in insect photoperiodism. Journal of Insect Physiology, vol. 57, no. 5, pp. 557–566. https://doi.org/10.1016/j.jinsphys.2011.01.013 (In English)
Saunders, D. S., Steel, C. G. H., Vafopoulou, X., Lewis, R. (2002) Insect clocks. 2nd ed. Amsterdam: Elsevier Publ., 560 p. (In English)
Simakova, T. P. (1978) Vliyanie temperatury i fotoperioda na rost lichinok 28-pyatnistoj korovki (Epilachna vigintioctomaculata Motsch) [Influence of temperature and photoperiod on increase of larvae of the 28-spotted potato ladybird]. In: L. A. Ivliev (ed.). Biologiya nekotorykh vidov vrednykh i poleznykh nasekomykh Dal’nego Vostoka [Biology of some species of pest and useful insects of the Far East]. Vladivostok: Far Eastern Branch of the Academy of Sciences of the USSR Publ., pp. 127–130. (In Russian)
Simakova, T. P. (1979) O fotoperiodicheskoj reaktsii kartofel’noj korovki Epilachna vigintioctomaculata Motsch (Coccinellidae) [On the photoperiodic reaction of the potato ladybird Epilacna vygintiostomaculata (Coccinellidae)]. In: L. A. Ivliev (ed.). Ekologiya i biologiya chlenistonogikh yuga Dal’nego Vostoka [Ecology and biology of arthropods in the southern Far East]. Vladivostok: Far Eastern Branch of the Academy of Sciences of the USSR Publ., pp. 91–95. (In Russian)
Simakova, T. P. (1981) Nakoplenie fotoperiodicheskoj informatsii u Epilachna vigintioctomaculata (Coleoptera, Coccinellidae). Zoologicheskij zhurnal, vol. 60, no. 1, pp. 53–61. (In Russian)
Wang, Z.-L. Wang, X.-P., Li, C.-R. et al. (2018) Effect of dietary protein and carbohydrates on survival and growth in larvae of the Henosepilachna vigintioctopunctata (F.) (Coleoptera: Coccinellidae). Journal of Insect Science, vol. 18, no. 4, article 3. https://doi.org/10.1093/jisesa/iey067 (In English)
Zlotin, A. Z. (1989) Tekhnicheskaya entomologiya [Technical entomology]. Kyiv: Naukova Dumka Publ., 183 p. (In Russian)
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Marina V. Ermak, Nataliya V. Matsishina, Ol’ga A. Sobko, Petr V. Fisenko
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The work is provided under the terms of the Public Offer and of Creative Commons public license Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows an unlimited number of persons to reproduce and share the Licensed Material in all media and formats. Any use of the Licensed Material shall contain an identification of its Creator(s) and must be for non-commercial purposes only.