The effect of using nutrient medium enriched with Reynoutria japonica extract on the survivorship of Drosophila melanogaster Meigen, 1830
DOI:
https://doi.org/10.33910/2686-9519-2024-16-4-936-943Keywords:
Drosophila melanogaster, Reynoutria japonica Houtt, extract, fecundity, body weight, lifespanAbstract
The paper evaluates the effects of varying concentrations (1–5%) of an extract from Reynoutria japonica Houtt. on the fecundity, body weight, and lifespan of Drosophila melanogaster Meigen, 1830. The research was carried out in vitro using nutrient media supplemented with the extract. Results showed that the population size of the flies increased, with averages ranging from 63.0 to 80.5 individuals, representing 1.8-2.4 times the control group population. Peak population growth was observed at extract concentrations of 4–5%. Body weight also increased, especially on the 30-40th day of life. At extract concentrations of 3–5%, body weight ranged from 0.89 to 1.25 mg, surpassing the control by 1.7–3.3 times. Additionally, the lifespan of the flies extended, with maximum longevity ranging from 40 to 43 days observed at 3–5% extract concentrations — an increase of 14–23% compared to the control. These findings suggest that D. melanogaster is a valuable model organism for studying the impact of plant extracts on key biological and physiological parameters of insects in laboratory settings.
References
Abd Rani, N. Z., Husain, K., Kumolosasi, E. (2018) Moringa genus: A review of phytochemistry and pharmacology. Frontiers in Pharmacology, vol. 9, article 108. https://doi.org/10.3389/fphar.2018.00108 (In English)
Adedara, A. O., Babalola, A. D., Stephano, F. et al. (2022) An assessment of the rescue action of resveratrol in parkin loss of function-induced oxidative stress in Drosophila melanogaster. Scientific Reports, vol. 12, no. 1, article 3922. https://doi.org/10.1038/s41598-022-07909-7 (In English)
Ajagun-Ogunleye, O. M., Adedeji, A. A., Vicente-Crespo, M. (2020) Moringa oleifera ameliorates age-related memory decline and increases endogenous antioxidant response in Drosophila melanogaster exposed to stress. African Journal of Biomedical Research, vol. 23, no. 3, pp. 397–406. (In English)
Álvarez-Rendón, J. P., Salceda, R., Riesgo-Escovar, J. R. (2018) Drosophila melanogaster as a model for diabetes type 2 progression. BioMed Research International, vol. 2018, no. 1, article 1417528. https://doi.org/10.1155/2018/1417528 (In English)
Bayliak, M. M., Shmihel, H. V., Lylyk, M. P. et al. (2015) Alpha-ketoglutarate attenuates toxic effects of sodium nitroprusside and hydrogen peroxide in Drosophila melanogaster. Environmental Toxicology and Pharmacology, vol. 40, no. 2, pp. 650–659. https://doi.org/10.1016/j.etap.2015.08.016 (In English)
Bier, E., Bodmer, R. (2004) Drosophila, an emerging model for cardiac disease. Gene, vol. 342, no. 1, pp. 1–11. https://doi.org/10.1016/j.gene.2004.07.018 (In English)
Bilen, J., Bonini, N. M. (2005) Drosophila as a model for human neurodegenerative disease. Annual Review of Genetics, vol. 39, no. 1, pp. 153–171. http://dx.doi.org/10.1146/annurev.genet.39.110304.095804 (In English)
Cabey, K., Long, D. M., Law, A. et al. (2022) Withania somnifera and Centella asiatica extracts ameliorate behavioral deficits in an in vivo Drosophila melanogaster model of oxidative stress. Antioxidants, vol. 11, no. 1, article 121. https://doi.org/10.3390/antiox11010121 (In English)
Deas, J. B., Blondel, L., Extavour, C. G. (2019) Ancestral and offspring nutrition interact to affect life-history traits in Drosophila melanogaster. Proceedings of the Royal Society B, vol. 286, no. 1897, article 20182778. http://dx.doi.org/10.1098/rspb.2018.2778 (In English)
Dionne, M. S., Schneider, D. S. (2008) Models of infectious diseases in the fruit fly Drosophila melanogaster. Disease Models and Mechanisms, vol. 1, no. 1, pp. 43–49. http://dx.doi.org/10.1242/dmm.000307 (In English)
Dubrovina, A. S., Manyakhin, A. Y., Zhuravlev, Y. N., Kiselev, K. V. (2010) Resveratrol content and expression of phenylalanine ammonia-lyase and stilbene synthase genes in rolC transgenic cell cultures of Vitis amurensi. Applied Microbiology and Biotechnology, vol. 88, no. 3, pp. 727–736. https://doi.org/10.1007/s00253-010-2792-z (In English)
Helfand, S. L., Rogina, B. (2003) From genes to aging in Drosophila. Advances in Genetics, vol. 49, pp. 67–109. http://dx.doi.org/10.1016/s0065-2660(03)01002-2 (In English)
Holvoet, H., Long, D. M., Law, A. et al. (2022) Withania somnifera extracts promote resilience against age-related and stress-induced behavioral phenotypes in Drosophila melanogaster; a possible role of other compounds besides Withanolides. Nutrients, vol. 14, no. 19, article 3923. https://doi.org/10.3390/nu14193923 (In English)
Iorjiim, W. M., Omale, S., Bagu, G. D. et al. (2020) Moringa oleifera leaf extract promotes antioxidant, survival, fecundity, and locomotor activities in Drosophila melanogaster. European Journal of Medicinal Plants, vol. 31, no. 15, pp. 30–42. https://doi.org/10.9734/ejmp/2020/v31i1530322 (In English)
Khalafyan, A. A. (2007) Statistica 6. Statisticheskij analiz dannykh [Statistica 6. Statistical data analysis]. 3rd ed. Moscow: Binom-Press, 512 p. (In Russian)
Kim, T.-I., Kim, Y.-J. (2005) Overview of innate immunity in Drosophila. Journal of Biochemistry and Molecular Biology, vol. 38, no. 2, pp. 121–127. https://doi.org/10.5483/bmbrep.2005.38.2.121 (In English)
Layalle, S., Arquier, N., Léopold, P. (2008) The TOR pathway couples nutrition and developmental timing in Drosophila. Developmental Cell, vol. 15, no. 4, pp. 568–577. http://dx.doi.org/10.1016/j.devcel.2008.08.003 (In English)
Lee, K.-S., Lee, B.-S., Semnani, S. et al. (2010) Curcumin extends life span, improves health span, and modulates the expression of age-associated aging genes in Drosophila melanogaster. Rejuvenation Research, vol. 13, no. 5, pp. 561–570. https://doi.org/10.1089/rej.2010.1031 (In English)
Lee, S.-H., Min, K.-J. (2019) Drosophila melanogaster as a model system in the study of pharmacological interventions in aging. Translational Medicine of Aging, vol. 3, pp. 98–103. https://doi.org/10.1016/j.tma.2019.09.004 (In English)
Li, Y., Peng, Y., Shen, Y. et al. (2022) Dietary polyphenols: Regulate the advanced glycation end products-RAGE axis and the microbiota-gut-brain axis to prevent neurodegenerative diseases. Critical Reviews in Food Science and Nutrition, vol. 63, no. 29, pp. 9816–9842. https://doi.org/10.1080/10408398.2022.2076064 (In English)
Li, Y. M., Chan, H. Y. E., Yao, X. Q. et al. (2008) Green tea catechins and broccoli reduce fat-induced mortality in Drosophila melanogaster. The Journal of Nutritional Biochemistry, vol. 19, no. 6, pp. 376–383. https://doi.org/10.1016/j.jnutbio.2007.05.009 (In English)
Lihoreau, M., Poissonnier, L. A., Isabel, G., Dussutour, A. (2016) Drosophila females trade off good nutrition with high-quality oviposition sites when choosing foods. Journal of Experimental Biology, vol. 219, no. 16, pp. 2514–2524. https://doi.org/10.1242/jeb.142257 (In English)
Lüersen, K., Röder, T., Rimbach, G. (2019) Drosophila melanogaster in nutrition research — the importance of standardizing experimental diets. Genes and Nutrition, vol. 14, no. 3, article 3. https://doi.org/10.1186/s12263-019-0627-9 (In English)
Luo, S., Jin, X., Ye, J., Znang, P. (1999) Advances in research on 3,4,5-trihydroxistilbene 3-β-D-glucoside, an effective constituent from Polygonum cuspidatum Sieb. et Zucc. Zhongguo Yaolixue yu Dulixue Zazhi, vol. 13, no. 1, pp. 1–4. (In English)
Matthews, M. K., Wilcox, H., Hughes, R. et al. (2020) Genetic influences of the microbiota on the life span of Drosophila melanogaster. Applied and Environmental Microbiology, vol. 86, no. 10, article e00305-20. https://doi.org/10.1128/AEM.00305-20 (In English)
Mattila, J., Hietakangas, V. (2017) Regulation of carbohydrate energy metabolism in Drosophila melanogaster. Genetics, vol. 207, no. 4, pp. 1231–1253. PMID: 29203701 (In English)
Moraes, K. C. M., Montagne, J. (2021) Drosophila melanogaster. A powerful tiny animal model for the study of metabolic hepatic diseases. Frontiers in Physiology, vol. 12, article 728407. https://doi.org/10.3389/fphys.2021.728407 (In English)
Pavlov, D. A., Chenikalova, E. V., Dobronravova, M. V. (2013) Biotekhnologiya v zashchite rastenii. Praktikum po vypolneniyu laboratornykh rabot [Biotechnology in plant protection. Laboratory work workshop]. Stavropol: Argus Publ., 140 p. (In Russian)
Pratomo, A. R., Salim, E., Hori, A., Kuraishi, T. (2022) Drosophila as animal model for testing plant-based immunomodulators. International Journal of Molecular Sciences, vol. 23, no. 23, article 14801. https://doi.org/10.3390/ijms232314801 (In English)
Shin, W. S., Di, J., Cao, Q. et al. (2021) Correction to: Amyloid β-protein oligomers promote the uptake of tau fibril seeds potentiating intracellular tau aggregation. Alzheimer’s Research and Therapy, vol. 13, no. 1, article 83. https://doi.org/10.1186/s13195-021-00824-5 (In English)
Staats, S., Lüersen, K., Wagner, A. E., Rimbach, G. (2018) Drosophila melanogaster as a versatile model organism in food and nutrition research. Journal of Agricultural and Food Chemistry, vol. 66, no. 15, pp. 3737–3753. https://doi.org/10.1021/acs.jafc.7b05900 (In English)
Staats, S., Wagner, A. E., Kowalewski, B. et al. (2018) Dietary resveratrol does not affect life span, body composition, stress response, and longevity-related gene expression in Drosophila melanogaster. International Journal of Molecular Sciences, vol. 19, no. 1, article 223. https://doi.org/10.3390/ijms19010223 (In English)
Suckow, B. K., Suckow, M. A. (2006) Lifespan extension by the antioxidant curcumin in Drosophila melanogaster. Journal of Biomedical Science, vol. 2, no. 4, pp. 402–405. https://doi.org/10.59566/IJBS.2006.2401 (In English)
Tettweiler, G., Miron, M., Jenkins, M. et al. (2005) Starvation and oxidative stress resistance in Drosophila are mediated through the eIF4E-binding protein, d4E-BP. Genes and Development, vol. 19, no. 16, pp. 1840–1843. http://dx.doi.org/10.1101/gad.1311805 (In English)
Wagner, A. E., Piegholdt, S., Rabe, D. et al. (2015) Epigallocatechin gallate affects glucose metabolism and increases fitness and lifespan in Drosophila melanogaster. Oncotarget, vol. 6, no. 31, pp. 30568–30578. https://doi.org/10.18632/oncotarget.5215 (In English)
Wei, T., Ji, X., Xue, J. et al. (2021) Cyanidin-3-O-glucoside represses tumor growth and invasion in vivo by suppressing autophagy via inhibition of the JNK signaling pathways. Food and Function, vol. 12, no. 1, pp. 387–396. https://doi.org/10.1039/d0fo02107e (In English)
Xiao, K., Xuan, L., Xu, Y., Bai, D. (2000) Stilbene glycoside sulfates from Polygonum cuspidatum. Journal of Natural Products, vol. 63, no. 10, pp. 1373–1376. https://doi.org/10.1021/np000086+ (In English)
Xiao, K., Xuan, L., Xu, Y., Bai, D. (2003) Studies on water-soluble constituents in rhizome of Polygonum cuspidatum. Zhongcaoyao, vol. 34, no. 6, pp. 496–498. (In English)
Xiao, K., Xuan, L., Xu, Y. et al. (2002) Constituents from Polygonum cuspidate. Chemical and Pharmaceutical Bulletin, vol. 50, no. 5, pp. 605–608. https://doi.org/10.1248/cpb.50.605 (In English)
Zhang, Z.-G., Niu, X.-Y., Lu, A.-P., Xiao, G. G. (2015) Effect of curcumin on aged Drosophila melanogaster: A pathway prediction analysis. Chinese Journal of Integrative Medicine, vol. 21, no. 2, pp. 115–122. https://doi.org/10.1007/s11655-013-1333-2 (In English)
Zorikova, S. P. (2011) Rejnutriya yaponskaya (Reynoutria japonica Houtt.) v Primorskom krae (biologiya razvitiya, flavonoidnyj sostav, biologicheskaya aktivnost’) [Reynoutria japonica Houtt. in Primorsky kray (developmental biology, flavonoid composition, and biological activity)]. Extended abstract of PhD dissertation (Biology).Vladivostok, G. B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 21 p. (In Russian)
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Svetlana A. Borovaya, Ol’ga A. Sobko
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The work is provided under the terms of the Public Offer and of Creative Commons public license Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows an unlimited number of persons to reproduce and share the Licensed Material in all media and formats. Any use of the Licensed Material shall contain an identification of its Creator(s) and must be for non-commercial purposes only.