APPLICATION OF REGRESSION EQUATIONS IN LIMNOLOGICAL RESEARCHES: ADVANTAGES OF USING ARTIFICIAL NEURAL NETWORKS
DOI:
https://doi.org/10.33910/1999-4079-2018-10-3-4-197-205Keywords:
limnology, regression models, artificial neural networks, ecosystem, primary production, chlorophyll a, zoobenthosAbstract
In the present paper the accuracy of regression models prediction of some important parameters of lake ecosystems (primary production, chlorophyll a concentration, zooplankton and zoobenthos biomass) is analyzed on the basis of literature data. It was shown that the prediction accuracy, measured as the mean absolute percentage error (MAPE), in almost all cases reaches 60-100%, what does not allow these models to be used for expert assessments of the ecosystem parameters of lakes. Using the literary data, multiple regression models were generated on the base of artificial neural network technology. Verification of the accuracy of these models was performed on independent data that were not used to build this model. Neural network regression models turned out to be more accurate – their mean absolute percentage error did not exceed 25%. Thus, in our opinion, the advantage of using regression neural network models in limnological studies is very perspective.
References
Иконников В.Б., Кузей Л.М., Суворов Д.В., 2003. Пространственные особенности трансформации лимнических систем Белоруссии // Озерные экосистемы: биологические процессы, антропогенная трансформация, качество воды. Минск. С. 25-28.
Китаев С.П., 2007. Основы лимнологии для гидробиологов и ихтиологов. Петрозаводск: Карельский научный центр РАН. 395 с.
Нейронные сети, 2008. STATISTICA Neural Networks: методология и технология современного анализа данных / Под редакцией В.П. Боровикова. М.: Горячая линия – Телеком. 392 с.
Трифонова И.С., 1989. Содержание хлорофилла и скорость продуцирования органического вещества в озерах с разным уровнем концентрации биогенных элементов // Трансформация органического вещества при антропогенном эвтрофировании озер. Л.: Наука. С. 78-93.
Dillon P.J., Rigler F.H., 1974. The phosphorus-chlorophyll relationship in lakes // Limnology and Oceanography, Volume 19, Issue 5. P. 767-773. https://doi.org/10.4319/lo.1974.19.5.0767
Hanson J. M., Peters R.H., 1984. Empirical prediction of crustacean zooplankton Biomass and Profundal Macrobenthos Biomass in Lakes // Can. J. Fish. Aquat. Sci., Vol. 41. P.439-445.
Rasmussen J.B., 1988. Littoral zoobenthic biomass in lakes, and its relationship to physical, chemical, and trophic factors. // Can. J. Fish. Aquat. Sci. 45. P. 1436-1447.
The world’s lakes have finally been counted, 2018 www.uu.se/en/media/news/ article/?id=3637&area=2,5,10,16&typ=artikel&na=&lang=en
Downloads
Published
Issue
Section
License
Copyright (c) 2018 O. P. Sosnovskaia, V. V. Skvortsov
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The work is provided under the terms of the Public Offer and of Creative Commons public license Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows an unlimited number of persons to reproduce and share the Licensed Material in all media and formats. Any use of the Licensed Material shall contain an identification of its Creator(s) and must be for non-commercial purposes only.